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Sedimentology and Reservoir Heterogeneity of a
Valley-Fill Deposit—A Field Guide to the Dakota
Sandstone of the San Rafael Swell, Utah

By Mark A. Kirschbaum and Christopher J. Schenk

Abstract

Valley-fill deposits form a significant class of hydro-
carbon reservoirs in many basins of the world. Maximizing
recovery of fluids from these reservoirs requires an under-
standing of the scales of fluid-flow heterogeneity present
within the valley-fill system.

The Upper Cretaceous Dakota Sandstone in the San
Rafael Swell, Utah contains well exposed, relatively accessi-
ble outcrops that allow a unique view of the external geometry
and internal complexity of a set of rocks interpreted to be
deposits of an incised valley fill. These units can be traced on
outcrop for tens of miles, and individual sandstone bodies are
exposed in three dimensions because of modern erosion in
side canyons in a semiarid setting and by exhumation of the
overlying, easily erodible Mancos Shale.

The Dakota consists of two major units: (1) a lower
amalgamated sandstone facies dominated by large-scale cross
stratification with several individual sandstone bodies ranging
in thickness from 8 to 28 feet, ranging in width from 115 to
150 feet, and having lengths as much as 5,000 feet, and (2) an
upper facies composed of numerous mud-encased lenticular
sandstones, dominated by ripple-scale lamination, in bedsets
ranging in thickness from 5 to 12 feet. The lower facies is
interpreted to be fluvial, probably of mainly braided stream
origin that exhibits multiple incisions amalgamated into a
complex sandstone body. The upper facies has lower energy,
probably anastomosed channels encased within alluvial and
coastal-plain floodplain sediments.

The Dakota valley-fill complex has multiple scales of
heterogeneity that could affect fluid flow in similar oil and gas
subsurface reservoirs. The largest scale heterogeneity is at the
formation level, where the valley-fill complex is sealed within
overlying and underlying units. Within the valley-fill complex,
there are heterogeneities between individual sandstone bodies,
and at the smallest scale, internal heterogeneities within
the bodies themselves. These different scales of fluid-flow
compartmentalization present a challenge to hydrocarbon
exploration targeting paleovalley deposits, and producing
fields containing these types of reservoirs may have significant
bypassed pay, especially where well spacing is large.

Introduction

There has been a large amount of study during the last
few decades on incised valley-fill deposits (for example,
Dalrymple and others, 1994), and on their potential as oil
and gas reservoirs (for example, Dolson and others, 1991).
Surprisingly few however, have well-documented examples
showing the detailed heterogeneity within ancient valley fill
successions. Even rarer are studies of valley fills that have
large proportions of fluvial strata within them, as most have a
significant proportion of estuarine facies.

This study gives an overview of the stratigraphy and
sedimentology of the Upper Cretaceous Dakota Sandstone
in the San Rafael Swell (fig. 1), provides a geologic field
guide to well exposed units of the formation in outcrops on
the west side of the San Rafael Swell in central Utah, and
briefly discusses the succession as an analogue for similar
type reservoirs.

The field guide explores relatively easy-to-access
outcrops that show different scales of features ranging from
lamination, beds, and individual sandstone bodies to genetic
sequence. The strata are set within a time stratigraphic
framework, and modern analogues help envision the ancient
depositional environments. The field trip will be particularly
useful to those trying to understand subsurface water and
hydrocarbon reservoirs.

Geologic Setting

Paleogeographic and isopach map reconstructions of
the Cenomanian stratigraphic interval (fig. 2) represent about
5 million years (m.y.), between 93.5 and 98.5 Ma (time scale
of Obradovich, 1993), and is almost the exact time frame
represented by deposits of the Dakota Sandstone (fig. 3). The
paleogeographic map shows an interpretation of a main trunk
drainage system running parallel to the thrust front, although
it may be that the Dakota deposits of this report were sourced
directly from the Pavant thrust belt (DeCelles, 2004, his
fig. 11), or at least, received sediment derived from the thrust
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(A) Location of the study area in central Utah. (B) Location of points of investigation in the San Rafael Swell. () Distribution
of paleocurrent measurements and calculated vector means taken from planar tabular (white arrows), trough (black arrows) cross
stratification, and all measurements for the Dakota on the west side of the San Rafael Swell. The vector means were calculated using

the method of Picard and Andersen (1975).




Geologic Setting 3

belt. The position of the thrust belt was about 100 miles west The size of the drainage basin that fed the Dakota fluvial
of the study area (fig. 2). system in the area of the San Rafael Swell is uncertain, but a
The modern San Rafael Swell is located on the edge of reconstruction (fig. 4) shows a hypothetical drainage basin for

the ancient foredeep of the Cenomanian foreland basin as indi-  the early Cenomanian using as an analogue the modern Pasca-
cated by the thin area on the isopach map (fig. 2) and has been ~ goula River drainage basin from the Gulf Coast of the United
interpreted as a possible forebulge area (DeCelles, 2004). To States in Mississippi.

the west, strata equivalent to the Dakota, the Sanpete Forma-

tion of the Indianola Group, thickens and coarsens in grain

size, reflecting its proximity to the thrust belt (Lawton, 1985).

\4
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1 |
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| T T
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Figure 2. (A) Paleogeography and (B) isopach of strata thickness (in hundreds of meters) for the Cenomanian Stage of the Late
Cretaceous for middle North America (Roberts and Kirschbaum, 1995). The map interval represents the time period from about 98.5 to
93.5 Ma, based on radiometric dates by Obradovich (1993). Note the Cenomanian boundary is placed at 93.5 Ma at its upper boundary
and at 99.6 Ma at its lower boundary (Cobban and others, 2006). Fault line marks the location of the restored thrust belt during
Cenomanian time. Ammonite symbols on isopach map show the location of stratigraphic columns in figure 3.
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Paleogeography (Neogastropilites americanus)
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Figure 4. Reconstruction of the paleogeography of the early Cenomanian sets the stage for the position of the
shoreline near the end of deposition of the Cedar Mountain Formation. Shoreline position from Cobban and others
(1994). During the 2-4.5 m.y. represented by the Dakota Sandstone, the shoreline would have migrated to the north to the
position shown during the time of Neogastropilites americanus, and then eventually transgressed into the study area

by the time of Sciponoceras gracile (see figure 3 for ammonite zones) and eventually overtopping the entire study area.
The drainage basin of the modern Pascagoula River (dendritic shading) is superimposed on the study area to provide

a relative scale of the Dakota system. Note that the Dakota Sandstone of the San Rafael Swell would represent just a
tributary of that system.
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Stratigraphy and Age

Cedar Mountain Formation

The Cedar Mountain Formation originally was named
by Stokes (1944) for a succession of varicolored shale and
lenticular sandstone and conglomerate beds in the northern
San Rafael Swell (see fig. 5). Stokes (1952) subsequently
included a basal conglomerate in the Cedar Mountain, the
Buckhorn Conglomerate Member, and described the presence
of carbonate nodules within the mudstone units. Kirkland and
others (1997) break out several members within the Cedar
Mountain. They describe two informal units that are in contact
with the Dakota Sandstone, an uppermost Mussentuchit
member of Cenomanian age and in some localities an older
Ruby Ranch member partly of Albian age. Kirkland and others
(1997) distinguished these two members by the presence of
carbonate nodules in the Ruby Ranch member and smectitic
mudstones in the Mussentuchit member. Northward in the
vicinity of J.J. Reservoir (fig. 5), the smectitic unit contains
conglomeratic sandstone at its base that extends over much
of the northwestern and northeastern parts of the San Rafael
Swell. At the type area of the Cedar Mountain near Buck-
horn Reservoir, Stokes (1952, p. 1773) clearly included this
conglomerate in the “Dakota” Formation and earlier Gilluly
(1929, p. 119) called it Dakota (?). On the east side of the
Swell, Young (1960, his fig. 6) called this conglomerate the
upper Naturita sandstone, but called it middle Naturita sand-
stone on the west side of the Swell (Young, 1960, his fig. 15).
Kirkland and others (1997) implied a Dakota name as well. It
is our opinion that the conglomerate unit between the smectitic
mudstone unit and the nodular carbonate mudstone unit is
equivalent to the Mussentuchit member. The Dakota (that is,
the Dakota valley-fill unit of this report) is only present on the
west side of the Swell.

The age of the Cedar Mountain is late Albian to lower
Cenomanian (fig. 3) based on dinosaur fossils, palynomorphs,
and radiometric dates (Cifelli and others, 1997; Kirkland and
others, 1997; Garrison and others, 2007). A minimum age of
about 96 Ma is reported for the Cedar Mountain (Garrison and
others, 2007).

Dakota Sandstone

The unit we designate as the Dakota commonly has been
called Dakota by previous workers (fig. 5). It was designated
the upper Naturita sandstone of the Dakota Group by Young

(1960, his fig. 15). The study unit within this report gener-
ally consists of: (1) a lower amalgamated fluvial sandstone
facies, and (2) an upper deltaic/estuarine heterolithic facies.
The lower unit is not present at the northernmost or eastern
part of the Swell and is best represented on the southwestern
part; it is best preserved in the Mesa Butte area (fig. 1). South
of Interstate 70, the upper part of the Dakota contains as much
as 19 feet (ft) of burrowed and hummocky bedded sandstone
with some ball and pillow structures and symmetrical wave
ripples, Ophiomorpha trace fossils, and marine bivalves
indicating a lower shoreface origin for these sandstones (fig. 5,
North Fork section). In the area around interstate 70 the unit
contains fossils in the lower Tununk Member of the Mancos
Shale ranging in age from latest Cenomanian to early Turonian
(Eaton and others, 1990).

The age of the Dakota is constrained by Inoceramids
and ammonites in the lowermost part of the Tununk Shale
and by the dating of the Cedar Mountain Formation (fig. 3).
The maximum age of the Dakota is based on radiometric
dates in the Cedar Mountain, which range (using one sigma
standard deviation) from 96.2 to 97.8 Ma. In the Mesa Butte
area, the shoreface deposits at the top of the Dakota contain
the ammonite Euomphaloceras (Kanabiceras) septemseriatum
and Pycnodonte newberryi, both indicative of the late Ceno-
manian Sciponoceras gracile ammonite zone (Cobban, 1976),
and various Inoceramids including /. pictus (Eaton and others,
1990). A bentonite from the zone of E. septemseriatum is
dated at 93.68 + 0.5 Ma by Cobban and others (2006) making
a minimum age range of between about 93.2 and 94.2 Ma for
the top of the Dakota. The range for deposition of the Dakota
is therefore between about 2 and 4.5 m.y.

Tununk Member of the Mancos Shale

The Tununk Member overlies the Dakota (figs. 3 and 5).
It consists of gray silt and clay with minor sandstone and
contains abundant marine Inoceramids and ammonites. In
many places the contact with the Dakota is marked by a pebble
lag composed of brown and gray chert and white quartzite
pebbles and oysters (Pycnodonte newberryi) at or near the
contact. In some localities the pebbles are matrix supported
within a few feet of the contact. Eaton and others (1990)
suggested this conglomerate, which can be as thick as 9 ft, to
be the result of uplift and removal of basal Cedar Mountain
sandstones; however, it is more likely related to reworking of
the conglomerate at the base of the Mussentuchits member by
marine wave ravinement.
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Facies Associations of the Dakota
Sandstone

Amalgamated Sandstone Unit

Description

The amalgamated sandstone facies association consists
of fine to very coarse sandstone, minor granular to pebbly
sandstone, and minor mudrock and conglomerate (table 1).
The facies association is as thick as about 70 ft and thins to
zero in places. Internally, it can be characterized as consist-
ing of multiple nested lenticular sandstone bodies dominated
by large-scale cross stratification (fig. 6), but there also is a
variety of lithofacies (table 1). The facies association contains
distinct dipping accretion surfaces at some localities and,
where the tops of bodies are exposed, the accretion surfaces
display curved surfaces. In plan view (fig. 7), contacts between
some bodies were observed to have intersecting erosional
contacts and slightly sinuous traces. The overall width of the
facies association is difficult to determine, but based on orien-
tation of the outcrops and minor subsurface control (Henry

and Finn, 2003, their plate 1) the width could be as wide as
about 8 miles (mi) or as narrow as about 5 mi. The facies
association can be traced along depositional dip from Solomon
Creek in the south to about Ferron Creek in the north, a
distance of about 35 mi (fig. 1). Overall the paleocurrents of
large scale trough and planar tabular cross stratification gener-
ally are to the north-northeast (fig. 1C). The main orientation
of the unit generally is northward heading into the subsurface
to the north along the San Rafael Swell (figs. 1, 5).

The facies association is best exposed and most easily
accessible in the Mesa Butte area, just south of Interstate 70
(fig. 1). In this area, several sections were measured, including
one complete detailed section (fig. 8), and numerous sketches
were made from photomosaics (fig. 9) and then examined
in the field. The main outcrop extends for about a mile in a
direction about 10 degrees north of due east. Paleocurrent
directions interpreted from large-scale cross stratification in
the Mesa Butte area have a vector mean of 13 degrees based
on 59 measurements (fig. 1C); therefore, the main outcrop is
primarily oriented along depositional strike. Within the Mesa
Butte study area, individual sandstone bodies are 8- to 28-ft
thick and about 115- to 500-ft wide, based on a detailed exam-
ination of 6 sand bodies. The sandstone bodies have simple

/Reactivation surface

Figure 6.
courtesy of Steve Cumella, Bill Barrett Corporation).

Large-scale cross stratification in the lower part of the Dakota Sandstone near Mesa Butte (photograph



external shapes with a lack of overbank extensions referred to
in some reports as wings. Reincison into older sand bodies is
common and scours cut 10 to 15 ft into older units. The main
complex at Mesa Butte thins rapidly to the west (fig. 9), but
then thickens again to about 55 ft in the westernmost exposure
before heading into the subsurface (fig. 7).

Internally, the lower interval consists of seven facies
(table 1), but it is dominated by cross stratification (fig. 8).
Multiple scours reduce most cross beds to less than a foot in

Table 1.
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thickness, although large-scale cross stratification is common
with heights of 2 to 3 ft. Cross stratification commonly contain
prominent reactivation surfaces (fig. 5). Ripple laminated
sandstone is less common, but is abundant at some locations,
predominantly near the tops of sandstone bodies, and it can
have both sub- and super-critical angles of climb (fig. 104, B).
Convolute bedding, horizontal lamination (fig. 10D) and scour
features (fig. 10C) filled with sandstone are present locally
within the unit.

Lithofacies of the lower and upper parts of the Dakota Sandstone from the San Rafael Swell and Blue Valley area, Utah.

Description of sedimentary

Thickness of

Facies

Grain size

structures facies unit

Comments

Upper Dakota: lenticular sandstone and mudrock unit

Cross-stratified Trough and planar-tabular Fine to medium 12 ft Dominantly planar tabular; one set
sandstone cross stratification; with counter-current ripples; small
0.5 to 1.6 ft beds; local troughs up to 1 ft wide; possible
convoluted beds to 5 ft; antidunes.
ripups common
Asymmetrical rippled ~ Dominant sedimentary Fine to medium; minor  4.3—12 ft Associated with lateral accretion
sandstone structure in sandstones; coarse or granules surfaces; some inclined heterolithic.
minor ripup clasts
Symmetrical rippled Very fine to fine <1.0 ft
sandstone
Laminated sandstone Horizonal to crude laminations  Very fine to fine 0.8to 4.3 ft  Plant fragments contains oysters
(Crassostrea?).
Burrowed sandstone Some Ophiomorpha; 0.8 to 15 ft
Skolithos?
Mudrock Claystone to sandy siltstone 0.9to 17 ft
Carbonaceous shale Laminated dark-gray clay to 0.5to 12ft  Root traces common.
silt-shale
Coal 0.4t0 0.8 ft
Lower Dakota: amalgamated sandstone unit
Intraformational Clay and siltstone clasts; some  Granules to cobbles Common on basal contacts.
conglomerate fossilized wood
Extraformational Gray, black, and light-brown Granules to pebbles Upto 1l ft  More common in southernmost
conglomerate chert, and minor white sections south of Mesa Butte, but
quartzite still present throughout area.
Crossbedded sandstone  Trough and planar-tabular Upper fine to granule Bedsetsup ~ Reactivation surfaces common, well
cross stratification; to 10 ft rounded grains; local carbonaceous
individual beds 0.2 to 4 ft fragments; widths of troughs
thick 1.5 to 6 ft.
Horizontally laminated Fine to medium 0.3to 3 ft Upper flow regime, locally filling
sandstone scour holes.
Rippled sandstone Low- to high-angle climb Very fine to fine 0.3 to 2 ft Minor component of this facies
association.
Convoluted sandstone Fine to coarse 0.6 to 3.6 ft
Mudrock 0.1to0 0.4 ft
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Geologic units
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Dakota Sandstone
Cedar Mountain Formation
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Figure 7. Valley-fill deposits within a square-mile area. The top view is a tracing from an aerial photograph of the outcrop belt north
of Red Valley (see fig. 1 for location) showing exhumed channel forms in the resistant Dakota Sandstone. The front cross sectional
view shows the general thickness of the Dakota valley fill as measured in the main side canyon east of Mesa Butte (Stop 1 of the field
trip). Horizontal distance of cross section is about 0.75 mile.
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Figure 8. Measured section of the lower 65
and upper parts of the Dakota Sandstone in -~ Coal
the Mesa Butte area. Sedimentary structures
are indicated in margin of section. The — Convolute bedding
section was measured in the main side 60
canyon and its location is shown on the far
left (west) section on plate 1. Also shown in — Ripples
figure 9 and figure 158 (measured section 9). v
Note the lower part of the section (lower 55
facies association) is dominated by cross
stratification and the upper part of the section ]
. .. . . —— Vertical burrows
(upper facies association) is dominated by — Ripples
ripple lamination.
— 50
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Figure 10. Typical sedimentary structures in the lower facies association of the Dakota Sandstone. (A) Linguoid ripples formed on top
of a bed; flow to right. Hammer for scale. Location is south of the J.J. Reservoir measured section (see figs. 1, 5). (B) Climbing ripples
with sub- to super-critical angles of climb in the Mesa Butte area. (C) Trough cross-stratification scoured and overlain by subhorizontal
lamination, which in turn is eroded by a scour pit; location is south of the J.J. Reservoir measured section. (D) Horizontal lamination
produced by upper flow regime plane bed from about the 13-ft level in the Mesa Butte measured section (fig. 8).
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Interpretation

The complex sand body geometry and lateral thickness
variability of this facies association is interpreted to result
from being deposited in a confined valley, incised during the
middle to late Cenomanian. The interpretation of a valley is
supported by the differential erosion into the Cedar Mountain
with respect to a marker bed in the Cedar Mountain and on the
lack of interfingering between the Dakota channels and Cedar
Mountain mudstone (fig. 7). The individual sand bodies are
interpreted as fluvial channels based on their overall upward
decrease in flow strength that can be observed in the few cases
where sand bodies have not been truncated by a younger body
(fig. 8). The amalgamation of the channels is due to generally
low accommodation space available to channels confined in
a valley. The presence of dinosaur footprints in sand bodies
near the base of the Dakota confirms that the individual sand
bodies are the active channels with depths of less than 28 ft
rather than the entire Dakota being the channel with depths as
much as 75 ft, because the footprints imply subaerial expo-
sure. Lateral accretion surfaces indicate some bank-attached
bars, but it is not clear exactly what type of rivers produced
these deposits. Multiple episodes of incision within individual
channels are indicated by truncation of cross beds leaving only
inches of preserved sets especially in the bottom of the bodies.
However, the large preserved crossbeds (fig. 6) indicates that
large two-dimensional barforms were present with multiple
reactivation surfaces indicating episodic flow with little
preservation of suspended load, which might be suspected
in braided streams or bank attached bars (fig. 114). Scour
holes may be indicative of channel confluences (Ashmore
and Parker, 1983), and they point to active multiple channels,
which is more indicative of braided than meandering streams

(fig. 10C).

Lenticular Sandstone and Mudrock Unit

Description

This facies association consists of interbedded lenticular
sandstone and mudrock with eight lithofacies (table 1). The
most distinctive feature is the presence of sandstone bodies
generally 5 to 6 ft thick but can be as much as 12 ft thick,
and of short lateral extent (less than about 50 ft) that are
enclosed within heterolithic deposits (plate 1). Sandstone is
fine to medium grained and predominantly ripple laminated,
although the unit has various types of sedimentary structures
(fig. 12, table 1). The sandstone bodies have prominent accre-
tion surfaces, and in the Mesa Butte area, they dip as much as
27 degrees, but mostly range from 14 to 25 degrees in their
steepest parts based on about 15 measurements of accretion
surfaces. Paleoflow is oblique and perpendicular to the accre-
tion surfaces based on measurements observed for ripples.
Surfaces shallow to a few degrees at their lower boundary.
Accretion surfaces form bedsets whose basal surfaces have
eroded older accretion bedsets. Paleocurrents within the bodies

show a wide dispersion of transport, but are within a single
quadrant of the compass, indicating an overall unimodal distri-
bution. One sandstone body, in the Mesa Butte area, is about
30-ft wide and can be walked out in a slightly sinuous path

for about 200 ft. The bodies are clearly sinuous in form and
exhumed bodies can be seen on tracings from aerial photo-
graphs (fig. 7); paleocurrent indicates paleoflow was mainly

in a northerly direction (fig. 1C). In a depositional downdip
direction, the channel forms have considerable mud and carbo-
naceous debris interbedded with sandstone, and the channel
fill can be described as inclined heterolithic strata.

Other lithologies within the facies association include
burrowed sandstone, minor amounts of carbonaceous shale
and coal, and oyster beds (table 1). Fossils from the mudrock
units include leaves and brackish water bivalves, and the
mudrock commonly is root penetrated. Thin coal beds are
most common in the thinner part of the sections presumably
near the edges of the valley margins.

Interpretation

This facies association was deposited in several different
depositional environments. The presence of minor coal, carbo-
naceous shale, and leaf fossils indicates freshwater influence,
whereas the presence of brackish water bivalves and oysters
indicate marine or tidal influence. Symmetrical ripples indicate
wave influence as well.

The sandstone bodies are interpreted to be channel depos-
its because of their overall fining upward grain size indicat-
ing decrease in flow strength upward. The lateral accretion
surfaces and sinuous form of the channels indicate meander-
ing; however, the narrow width of the channels indicates that
they were short lived—that is, they did not meander widely.
Multiple scours within the accretion sets probably indicate
major floods and reorientation of the channels. This seems to
indicate (1) higher flows during floods producing cross bedded
units, and (2) primarily lower flow regimes during lower flows
as seen by the dominance of ripples. The distinction between
this facies association and the underlying amalgamated
sandstone facies association is not always apparent. Because
of the localized nature of preservation of this facies associa-
tion, these types of lower-energy deposits also are present on
the edges of some of the higher energy deposits. This facies
association is similar to those described for a bayhead delta
complex for the Neslen Formation in central Utah (Kirsch-
baum and Hettinger, 2004) or an anastomosed stream complex
in the Dakota Sandstone in southern Utah (Kirschbaum and
McCabe, 1992).

A possible modern analogue would be the bayhead
deltaic system in the Pascagoula River, Mississippi (fig. 115),
in which a valley was cut during the last glacial maximum and
lowered sea level, and then was flooded during the subsequent
melting of the ice (Kindinger and others, 1994). Today, the
river is building into the estuary of the flooded valley. Updip
from the estuarine facies are multiple anastomosing channels
within a wetland. A logical interpretation for the location of
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Figure 11. (A) Tracing of a channel and barforms from a tributary of the Orinoco River in South America. Side-attached transverse
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Terrace

bars are a possible analogue for the large-scale cross stratification in the lower facies of the Dakota Sandstone at Mesa Butte.

(B) Tracing of the lower reaches of the modern Pascagoula River in Mississippi about 16 miles upstream from the river's mouth where
low gradient, highly sinuous channels are confined to an incised valley. Note that some parts of the channel of the Pascagoula River

curve back (small arrow) upstream, a pattern that is similarly envisioned for some of the small channels of the upper facies of the

Dakota at Red Valley (Stop 2).
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Figure 12. Sedimentary structures in the upper facies association of the Dakota Sandstone. (4) Ripple lamination. (B) Trough cross
stratification and mud chip conglomerate (pockmarks near geologist hand).
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the coals in the upper parts of paleovalleys is that they devel-
oped on interfluves during relative sea-level rise when water
tables were rising.

Overview of Reservoir Heterogeneity of
the Dakota Sandstone

The various scales of heterogeneity in valley-fill deposits
present a challenge to explorationists not only in the determi-
nation of the overall geometry of the valley fill but also with
significant bypassed pay that arises where well spacing is large
compared to the geometry of the sandstones within the valley
fill. The valley-fill complex in the Dakota exhibits several
scales of heterogeneity that could affect fluid flow in similar
subsurface reservoirs.

The largest scale of heterogeneity is a function of the
variability in lateral extent of the valley-fill complex, which is
sealed within mudstones of the overlying Tununk Member of
the Mancos Shale and the underlying bentonitic mudstones of
the Cedar Mountain Formation. The next scale of heterogene-
ity is related to the amalgamated sandstone bodies within the
valley-fill complex, where the sandstones are multistory and
multilateral bodies that potentially could form individual reser-
voir compartments. Contacts between the individual channel
bodies are erosional and might create permeability differences
between sandstone bodies as noted by Willis (1998).

The next scale of heterogeneity is within the individual
sandstone bodies, as grain size, lithology, type of physical and
biogenic sedimentary structures, and diagenesis are factors
controlling variations in fluid flow at this scale (Willis, 1998,
his figs. 14G and 15; Willis and White, 2000; Pranter and
others, 2007). Sedimentary structures cause directional perme-
ability that varies from bed to bed, and diagenetic barriers
may create significant local porosity and permeability varia-
tions (Willis and White, 2000). Thin shale units adjacent to
sandstones create potential barriers that could affect vertical
migration of fluids (Pranter and others, 2007).

In the upper facies association of the valley-fill complex,
sandstone channels are isolated mostly within mudstones
creating compartmentalization of the sandstone bodies.
Lateral accretion surfaces create potential barriers within
the sandstones (Pranter and others, 2007) particularly
where a heterolithic fill is present, which is common in the
Dakota Sandstone.

Field Trip Stop Descriptions

This field guide has been developed from exposures of
the San Rafael Swell (fig. 13), using the following criteria:
(1) good exposures, (2) a variety of sand-body geometries
and sedimentary structures, and (3) ready access to outcrops.
The first two stops do require several long walks to the best
exposures.

The field trip ideally would start and finish at Green
River, Utah and the complete trip would require a day and a
half—one day on the west side of the San Rafael Swell and
one half day in the southern part of the Swell (fig. 13). An
alternate trip can be completed in a single day by restrict-
ing visits to Stops 1.1, 1.2, 1.4, 3, and 4 while also passing
through the scenic Capitol Reef National Park (fig. 13).

Stop1 Mesa Butte Area

The Mesa Butte area is located about 60 miles west of
Green River, Utah or about 45 miles east of Salina, Utah on
the west side of the San Rafael Swell south of Exit 99 along
1-70 (fig. 13). The first few stops are within the Mesa Butte
7.5-minute topographic quadrangle in sec. 25, T. 23 S, R. 6 E.

Take Exit 99 and turn south on the two track dirt road
(called Blue Road to the south and County Road 912 to the
north). Proceed south about 1 mile on the dirt track. The
road curves to the west into section 26 into a side tributary of
Muddy Creek. Note the thin coal near the top of the Dakota
Sandstone. Continue on into section 25 and park the vehicle
in the southwestern part of the northwest quarter of section 25
(fig. 14). You should park near the head of the small side
drainage of the main canyon. Note: The two-track road is on
bentonitic shale of the Tununk Member of the Mancos Shale
and is impassible when wet.

Stop 1.1  Side Canyon of Muddy Creek, East of
Mesa Butte

Access to Stop 1.1 requires a hike of moderate difficulty
to the south side of the drainage, which is an east-oriented
side canyon to Muddy Creek (fig. 14). Initially walk due east
avoiding the small north-oriented subsidiary drainage before
angling to the northeast. The best views are in the morning or
early afternoon.

Objectives

This stop provides an overview of the stratigraphy of the
Dakota Sandstone and adjacent units, and a view of the inter-
nal architecture of the Dakota Sandstone.

Discussion

The Dakota Sandstone is overlain by marine shale of the
Tununk Member of the Mancos Shale and is in turn overlain
by the Ferron Sandstone Member of the Mancos Shale, which
supports the cliffs of Mesa Butte to the west and the Coal
Cliffs to the northwest. The Dakota is underlain by the alluvial
bentonitic mudrock of the Cedar Mountain Formation (Garri-
son and others, 2007). The exact contact between members of
the Cedar Mountain is uncertain, but there is an overall change
from carbonate nodules within the Ruby Ranch member
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Figure 13. Locations of stops for the field trip.

and the overlying bentonitic mudrock of the Mussentuchits
member of the Cedar Mountain.

The Dakota Sandstone is dominated by amalgamated
sandstone bodies in the lower part of the exposure and smaller
ribbon sandstone bodies encased in mudrock in the upper part
(fig. 15, plate I). The sandstone bodies have erosional bases
and are composed mainly of small- to large-scale cross stratifi-
cation (fig. 15D).

A hierarchy of erosion surfaces can be observed within
the outcrop—master erosion surfaces at the base (fluvial inci-
sion) and top (marine transgressive) and numerous internal
fluvial erosion surfaces (fig. 15 and plate 1). Considering that
the succession was deposited over at least 2 m.y., the internal
erosion surfaces could reflect reincision of drainages follow-
ing repeated falls in sea level (fig. 3) or reworking by avulsive
events in an overall low accommodation setting. Notice the
lack of overbank deposits—the channel bodies are relatively
simple without wings. The widths of individual sand bodies
are from about 115 to 500 ft, which is similar to the open
channels (about 300 ft) in the field of view in figure 11, but
from a slightly different depositional environment. Overall,
the sand bodies appear to be confined to their channels and
lack preserved overbank deposits.

Reservoir Considerations

This location is particularly enlightening in terms of the
overall geometry of the Dakota sandstone bodies and their
internal complexity. At this stop, you have an unobstructed
view of almost a mile of outcrop and can observe a formation
thickness change from about 5 to 70 ft (figs. 9, 15; plate I).
The tendency is to focus one’s attention on the sandstone, and
most visitors tend to comment on the overall continuity of
the sandstone unit. This continuity is illustrated by examin-
ing figure 154 where the generalized section outlines a simple
form of the Dakota. This generalized cross sectional view is
similar to many modern and ancient cross sections of valley
fill successions for its simplicity; however, a closer look at the
internal geometry based on mapping internal erosion surfaces
reveals extreme discontinuity and compartmentalization
(fig. 15B and C; plate ). The sandstone bodies are mostly in
direct contact with other bodies, but it is not clear what the
transmissivity would be between them because of possible
permeability differences. There also are minor mudrock
intervals that could be potential barriers to flow. The interval is
situated between marine shale above and bentonitic mudrock
below, thus providing good top and bottom seals.
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An additional component for compartmentalization is the
length of the channel (fig. 7). It is easy to foresee the drill-
ing density that might be needed to access all of the potential
compartments in an incised valley-fill deposit. The lengths of
the sandstone bodies will be addressed at Stop 2, where one
can walk out some of these sandstone bodies longitudinally,
down depositional dip.

Stop 1.2 Dinosaur Footprints

Stop 1.2 requires a steep descent into the drainage and
part way up the other side of the drainage and then a return to
Stop 1.1.

Objectives

The stop is subsidiary to the main focus of the trip but is
of interest to view dinosaur trackways in fallen blocks of the
Dakota.

Discussion

The tracks are exposed on the bottom of multiple blocks
that have fallen away from the main Dakota outcrop (fig. 16).
We believe these blocks are from the sandstone body near the
top of the main amalgamated sandstone unit. The tracks are
common in the area and indicate the stream bed may have
been used for ease of movement through the landscape.

Stop 1.3 Amalgamated Sandstone

After returning to the top of the southern rim of the side
drainage, proceed southeast on an easy traverse for about
1,000 ft to the eastern edge of the Dakota outcrops (fig. 14).
The stop is west of a conical hill shown in figure 14, and
the photograph panel (fig. 17) was taken from that hill. The
sandstone is best viewed from below and the best lighting for
photographs is in the morning.

Objectives

The point of this stop is to view a well-exposed depo-
sitional dip oriented outcrop of two of the sandstone bodies
associated with the amalgamated sandstone facies. The main
lithofacies seen here are the large-scale cross stratification
with numerous reactivation surfaces (figs. 6 and 17).

Discussion

Sand body 1, the lowest stratigraphically (fig. 17), is not
as well exposed as sand body 2, but is unique to the study
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interval because of the amount of soft sediment deformation
present at this locality. Soft sediment deformation is common,
and it is apparent from relict sedimentary structures that much
of this facies originally was large-scale cross stratification
(fig. 17E). Another unique facies of the Dakota can be seen

at this locality (fig. 17D). It has a basal irregular scour filled
with massive disorganized sand that is apparently related to
scour holes or pits eroded into the bottom of the channel by
strong currents.

Sand body 2 has well-preserved, large-scale cross
stratification with well-developed reactivation surfaces. Cross
beds are relatively horizontal in the third dimension, indicat-
ing deposition from straight-crested, two-dimensional dunes.
There also is large-scale trough cross stratification. Reacti-
vation surfaces typically are associated with tidal or eolian
deposits, but also are common in fluvial deposits (Collinson,
1970; McCabe and Jones, 1977). The large-scale stratifica-
tion at this locality is present at the top of the sandstone body;
cross stratification in the lower part consists of multiple thin
beds (fig. 17C).

The large scale nature of the upper preserved bed, the
generally unidirectional paleocurrent directions, and context
with other sedimentary structures (fig. 15D) indicate a fluvial
environment of deposition. The multiple reactivation surfaces
indicate fluctuating flows. Poor preservation of the lowest sets
is interpreted to indicate multiple periods of erosion within
these channels and the development of barforms building
within channels. The relatively small size of the sandstone
bodies and lack of overbank deposits or wings to the sand
bodies as seen at Stop 1.1 indicates a confined system for
these channel bodies. We suggest the possibility that the large-
scale cross stratification was formed from straight to slightly
sinuous barforms that may have extended across most of the
entire sand body modified by small channels and superim-
posed lunate dunes (see fig. 114).

Reservoir Considerations

This stop shows the level of complexity within the
valley fill at a more detailed level by viewing two sand bodies
oriented parallel to the paleoflow direction. The variation in
thickness and continuity of the individual sedimentary struc-
tures should create considerable variations in permeability,
and indicate the possibility of compartments within the sand
body itself. Willis (1998) showed more variability between
major valley bodies than within individual bodies, although he
does document considerable variability within some fills. Even
within the large-scale crossbeds seen at this locality there may
be permeability variations (for comparison, see Willis and
White, 2000, facies five, their fig. 4).
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Stop 1.4 Ribbon Sandstone Bodies

The next stop is back near the vehicles in the south half
of the northwest quarter of section 25 (fig. 14). From Stop 1.3,
it is a one-half mile easy traverse back to the west (fig. 14).
A view of the locality is provided in figure 184 and it may
be best to reorient oneself by returning to the road before
proceeding to Stop 1.4. The best time for viewing these
outcrops begins in the early afternoon and continues until the
late afternoon.

Objectives

At this stop, there are numerous ribbon sandstone bodies
exposed in three dimensions, including exhumed sinuous
sandstone bodies that can be walked out for hundreds of feet.
The discussion at this stop invariably focuses on whether these
sand bodies are channels or small deltas. Our conclusion is
that they are channels of a low-gradient, relatively low-energy
anastomosed channel system.

Discussion

The sandstone bodies generally are 5- to 6-ft thick, but
can be as thick as 12 ft, and are of short lateral extent, gener-
ally less than 50 ft, partly or totally enclosed within mudrock.
The sandstones are fine to medium grained and predominantly
ripple laminated. They have prominent accretion surfaces
that dip as much as 27 degrees, although they range mostly
between 14 to 25 degrees in their steepest parts based on about
15 measurements at this locality. Paleoflow is oblique and
perpendicular to the accretion surfaces based on measurements
obtained from ripples (fig. 18C). One sandstone body is about
30 ft wide and can be walked out in a slightly sinuous path for
about 200 ft (fig. 18B). The sandstone bodies are interpreted
to be channel deposits because of their overall fining upward
grain size and upward decrease in flow strength. The lateral
accretion surfaces and sinuous form of the channels indicate a
meandering pattern; however, the narrow width of the chan-
nels indicates a narrow stream. These channels were short-
lived and did not meander far across the floodplain.

The sandstone bodies overall are enclosed within finer
grained organic-rich facies. The presence of minor coal,
carbonaceous shale, and leaf fossils indicates some freshwater
influence, but the presence of rare Ophiomorpha burrows,
brackish water bivalves, and oysters also indicates local
marine or tidal influence. Rare symmetrical ripples indicate
local wave influence.

Stop2 Red Valley Area

Stop 2 is located about 2 mi due north of Mesa Butte, on
the edge of an area called Red Valley (fig. 1, point RV). Drive
back to I-70 from Stop 1, cross over it on the overpass, and
continue straight ahead on the paved road up Muddy Creek

toward Emery, Utah. At about 1 mi from the overpass (in the
southwest quarter of section 12) there will be a two-track dirt
road heading east across Muddy Creek, with public access
through private property (fig. 19). The road bends to the south
onto public land and it may be prudent to park in this area and
walk before the road swings back to the east and down into

a dry wash. Depending on the condition of the road, you can
drive to within a few hundred feet of the stop. The traverse
follows one sandstone to the north (sand body 1) and returns
on parallel sandstone (sand body 2) back to the vehicles (see
fig. 19). If you walk the road it is over one-half mile of moder-
ate terrain and grade.

Objectives

At this location, our position is closer to the western edge
of the valley than at Stop 1 at Mesa Butte. From aerial and
satellite photography there appear to be exhumed paleochan-
nels at this locality. On the ground, these exposed channels
do appear to be exhumed by erosion of the overlying marine
shale of the Tununk and undercut from erosion into the white
bentonitic shale of the underlying Cedar Mountain Formation.

The primary purpose of the stop is to examine two
sandstone complexes, one containing the higher energy cross-
stratified facies and the other containing the ripple-bedded
facies. The juxtaposition of the two facies in parallel sandstone
complexes makes this location unique, and that they occupy
the same apparent stratigraphic position based on the amount
of erosion into the underlying bentonitic mudrock of the
Cedar Mountain.

Discussion

This area is of interest because of the apparent exhumed
topography created by the weathering of the Tununk Member
exposing remnants of Dakota Sandstone. Sinuous sections
of channel sandstone bodies appear to be preserved within
enclosing shale, but another possibility is that the Dakota
once covered the entire surface and now has been selectively
eroded. Unfortunately, the entire outcrop is modified exten-
sively by the erosion and undercutting of the Dakota sandstone
bodies and it is difficult to reconstruct the true geometry of
the bodies. In other areas where there is continuous Dakota,
elements of sinuous sand bodies also can be identified (fig. 7).
This traverse gives insight into the length of Dakota sand
bodies, which are as long as 4,000 ft but only 100-ft wide

(fig. 7).

Stop2.1 Channel Edge Sand Body 1

After driving or walking to the easternmost parking
area, walk to the northeast towards the apparent bifurcation
of the Dakota near Stop 2.1 (fig. 19). The termination of the
sandstone outcrop is mainly made up of blocks of sandstone
dropped by undercutting of the white-weathering bentonitic
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Al 3
Valley™

e f

n \ ‘J\.\\\/“ \7, — \EXit 99

RGE RTE EXPLANATION
0 1,000 2,000 3,000 FEET .
| | | ) Two-track dirt road
[ I I T
0 300 600 900 METERS <€ Direction of travel
== May be impassable across small drainage
02.1 Stop

A Parking area

.q Viewpoint of photographs in figures 20-21

Figure 19. Upper part of the Red Valley area just north of Interstate 70 and Stop 1 at Mesa Butte taken from the Mesa Butte 7.5-minute
topographic quadrangle. The two separate parking areas reflect whether the road is passable across a small drainage marked by blue
arrow below westernmost parking area.



mudrock of the underlying Cedar Mountain Formation. The
stop is at the first inplace outcrop on the west side of the expo-
sure (fig. 204), where the sandstone displays three bedsets

in about 15 ft of section (fig. 20B). The lowest bed displays
climbing ripples with a relatively high angle of climb but still
without stoss side preservation indicating high sedimentation
rates. The middle bed is cross stratified with multiple reactiva-
tion surfaces and some topset preservation; it is trough shaped
in the third dimension, indicating episodic fluctuating flows
of three-dimensional dunes moving as discrete bedforms.

The upper bed contains abundant ripup clasts, cross beds, and
convoluted beds all indicative of a channel fill. The scale and
flow velocity of the units are indicative of the fluvial amal-
gamated sandstone facies of the Dakota. Note that the general
transport direction is north-northeast.

Stop 2.2 Traverse of Top Surface of
Sand Body 1

Climb to the top of the sand body 1 and walk along
the top toward the northeast. Note that many of the blocks
are highly unstable. Hike to the point where the next appar-
ent bifurcation joins this body from the west. Photograph
figure 204 shows a view back to Stop 2.1 and also shows the
general location of Stop 1 where one can observe a definite
transition from the amalgamated sandstone facies into the
heterolithic facies to the west. The view back to the north
shows continuous sandstone to the northeast, whereas the

sandstone is much more irregularly preserved to the northwest.

Note that the sandstone body appears to cut, and therefore

is younger than, the next adjoining channel at Stop 2.2. At
several points along the traverse you can descend over the
edge to observe the facies. Photographs in figures 20C and
20D show beds with the same type of cross stratification as
seen elsewhere. These are overlain by beds with horizontal to
slightly dipping bedding that up close are seen to be low-angle
preservation ripples (pseudo-horizontal lamination) indica-
tive of superimposed ripples moving in shallow water and
erosively removing the stoss side of the older ripple form.

Stops 2.3 and 2.4 View and Traverse of
Sand Body 2

Continue on to the northeast to Stop 2.3 (fig. 19). One
should now be able to see another sandstone body to the west
(fig. 214), trending parallel to the body just walked on for
about 1,000 ft, the entire length of the body is about 1,800 ft
before it is separated by undercutting. However, it appears to
continue further based on satellite views and the trend of the
body. As an aside, note the strong joint pattern in the Dakota
Sandstone that parallels the trend of the west limb of the San
Rafael Swell (also seen in fig. 21B). The Dakota is broken up
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badly by undercutting of the jointed blocks; therefore, one
needs to climb down to the west to avoid jumbled blocks of
sandstone that make walking difficult.

Sand body 2 (fig. 21) is disconnected from the previous
sandstone, and it is unclear how or if the two are connected.
Sand body 2 actually is a complex of multiple bedsets and
the main observation is in the uppermost part of the complex,
where cross stratification clearly shows transport to the
southwest, which is 180 degrees to the transport direction of
sand body 1. When one walks over to Stop 2.4, the bedsets
show a variety of sedimentary structures, but they are mainly
subcritical- to supercritical climbing ripples (fig. 21C, E). The
sand body contains rare burrows including probable escape
structures (fig. 21D) and straight, vertical, sand-filled tubes
resembling Skolithos.

The southerly paleocurrent directions, low-energy fill,
ripples, and rare burrows are interpreted to be related to the
uppermost heterolithic facies. The sandstone is probably an
entirely younger fill than sand body 1 even though the sand
bodies occupy the same stratigraphic position. No part of
this sandstone is likely related to the oldest part of the fill at
Mesa Butte.

Reservoir Considerations

This stop allows one to walk along the length of, and
within, two sandstone bodies located at the margins of the
valley complex in order to obtain a three-dimensional view of
a reservoir compartment. Within this part of the valley fill the
sandstone body compartments are enclosed with mudrock, so
fluid flow would be directed along the length of the body. It is
not clear to what degree there would be transmission of fluids
between bodies where they are superimposed in the main part
of the valley fill.

Stop3 Caineville Reef Area Interfluvial Area
Between Valley Systems

The stop is between Hanksville and Torrey, Utah along
State Highway 24 (fig. 22). From Stop 2, the Caineville area
can be accessed by two different routes: however, the most
scenic is through Capitol Reef National Monument, a distance
of about 90 miles and requiring about 2 hours driving time.

Return to I-70 from Stop 2 and head west on I-70. Take
Exit 91 and head south under the overpass and take an imme-
diate right turn (west) to access State Highway 72 heading to
Fremont and Loa, Utah (fig. 13). After traveling about 30 mi
and passing through Fremont, Utah, State Highway 72 termi-
nates at State Highway 24. Turn left (east) and drive for about
40 mi passing through Lyman, Bicknell, Torrey, and Capitol
Reef National Monument. It is easy to get distracted in Capitol
Reef and field trips usually make a couple of brief stops for
both scenic and geologic interest.
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The road follows the Fremont River through Capitol
Reef (fig. 13), passes out of the park, and crosses the river,
which moves out of view to the east of the Ferron Sandstone
Member of the Mancos Shale (fig. 3). After crossing the
river, the road straightens and flattens out for about one-half
mile and begins to rise topographically. Park at the road cut
exposing the Tununk Member of the Mancos Shale, in the
north end of section 10 (fig. 22). Walk back down the road
toward Capitol Reef and traverse to the west to the contact
between the Tununk Member and the Cedar Mountain(?)/
Morrison Formation.

Alternately, if driving from the east side of the San Rafael
Swell, from Hanksville drive west on Highway 24 to Cainev-
ille, a distance of about 18 miles. Continue west on Highway
24 (pass through dipping Ferron Sandstone Member) the road
bends to the south and heads up a rise. At about 1.5 mi from
Caineville you pass through a road cut of the Tununk Member.
Park at the road cut. Proceed to the south on foot, down the
road until you can head west on relatively level ground to the
base of the Tununk Shale (see map fig. 22B).

Objectives

The significance of this stop is not what one can see,
but what one cannot see. There is no Dakota Sandstone. One
can see: (1) a carbonate-nodule-bearing mudrock unit that
is either part of the Cedar Mountain Formation or Morrison
Formation, (2) a chert-pebble lag that represents the remnant
of the Dakota, (3) an oyster deposit consisting exclusively of
Pycnodonte newberryi (fig. 22D), and (4) marine mudrock of
the Tununk Member of the Mancos Shale.

Discussion

At this locality, there are no deposits of the Dakota
Sandstone. This area is interpreted to be an interfluvial
area between two valley complexes that trend to the north-
northeast: one on the west side of the Swell, seen at Mesa
Butte and Red Valley, and one in the southern part of the Swell
near the Henry Mountains. For other Dakota rocks in the
Henry Mountains area, see Hunt and others (1953, their figure
19). This interfluve matches up with the lack of Dakota on
the east side of the San Rafael Swell. The conglomerate and
pebbly sandstone observed on the eastern part of the Swell are
interpreted to be the basal beds of the Mussentuchits member
of the Cedar Mountain Formation.

At Stop 3, the basal Dakota unconformity and transgres-
sive marine surface of the Dakota merge and the resulting
hiatus represents at least 2 m.y. of time (fig. 3). One would
expect a major paleosol to be present at this location, but if it
was ever present it may have been eroded by wave ravinement
during marine transgression as represented by the chert-pebble
lag. To the north, just before Caineville, there is a dirt road
that heads off to the north (at the base of the Ferron Sandstone
Member) that heads up to another outcrop of the Dakota.

Field Trip Stop Descriptions 3

At these northern locations, there is carbonaceous shale and
thin coal occupying the space between the two unconformi-
ties. The coal probably represents the record of the paleosol
that developed during rising freshwater tables on the coastal
plain associated with transgression of the overlying Tununk
Member (figs. 3 and 5).

Reservoir Considerations

The interfluvial area bounds the valley and demonstrates
the existence of lateral seals for the valley-fill deposit.

Stop4 Blue Valley—Back in Another
Valley-Fill Complex

From Stop 3, go eastbound on State Highway 24 through
Caineville for approximately 13.5 mi. At about 9 mi you
will reach the top of a mesa held up by the Ferron Sandstone
Member of the Mancos Shale, and Factory Butte will be
visible to the left (north). Proceed down section through the
Ferron and out onto a flat stretch of road. The road crosses a
small drainage flowing into the Fremont River, and one can
see the view in figure 23B located in the extreme uppermost
center of section 22 (fig. 23) Turn left and park along the dirt
road coming in from the north through section 15.

If driving from Hanksville, the parking area is about
6.5 miles west of the junction of State Highway 24 with State
Highway 95. This location also is described in an excellent
field guide by Fielding and others (2010).

Objectives

The Dakota Sandstone at this location consists of three
variations of the facies that were seen at Mesa Butte: (1) a
conglomeratic and cross bedded pebbly sandstone facies
(fig. 24B), (2) a heterolithic facies dominated by burrowed,
inclined heterolithic strata (figs. 24C, D), and (3) a burrowed
sandstone facies with pebbles and oyster fossils (fig. 24E, F).
The unit is overlain by Tununk Member containing the same
late Cenomanian oyster (P. newberryi) as at Mesa Butte.

Discussion

The Dakota Sandstone at this location rests unconform-
ably on the Cedar Mountain Formation (Lawyer, 1972; Field-
ing and others, 2010) or the Morrison Formation (fig. 244,

E) (Young, 1960), depending on the interpretation. The
underlying unit here is a mottled variegated mudrock that

is interpreted as a paleosol (B. Currie, Miami University,

oral commun., 1998). The Dakota is overlain by the Tununk
Member containing Pycnodonte newberryi, a late Cenomanian
marine oyster that is also present on the San Rafael Swell. The
age of the Dakota at this locality is not constrained other than
by the age of the oyster; however, the stratigraphic position
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A B
Upper
Middle
Lower

c D

E F

Figure 24. (A) View of contact between variegated mudrock of the Morrison Formation and the sandstone of the Dakota (location

on fig. 23A). (B) View of outcrops north of Stop 4.3. Outcrops showing the 3 parts of the Dakota Sandstone about 50 feet thick—upper,
middle, and lower. This locality is the best place to see the conglomerate and pebbly cross bedded sandstone facies of the lower part
of the Dakota. Note the large-scale bedding that dips left to right across the lower sandstone. (C) Closer view of outcrop on fig. 238
showing heterolithic facies and upper burrowed sandstone facies; person circled for scale. (D) Closer view of inclined bedding in C with
thin discontinuous sandstones and less resistant sandy mudrock. (E) Closer view of sandy mudrock with well preserved Teichichnus
burrows. (A Close-up view of contact between the heterolithic facies and the burrowed sandstone facies. Vertical to sub-vertical
burrows filled with sand and chert granules of the upper unit of the Dakota.
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indicates it is probably time equivalent to some part of the
Dakota at Mesa Butte, but it could be as old as the Mussen-
tuchit member of the Cedar Mountain Formation. The main
purpose of this stop is to see the lateral variation in facies
between here and Caineville Reef.

The section at Stop 4 was first measured by Hunt and
others (1953) as part of a regional study of the Henry Moun-
tains Basin and was later studied by Lawyer (1972) and Field-
ing and others (2010). All workers show the three part division
of a lower conglomerate and pebbly sandstone, a middle
organic-rich zone, and an upper burrowed shell-rich unit. The
Dakota is 0 to 76 ft thick in the Henry Mountains Basin (Hunt
and others, 1953).

The conglomerate and cross bedded pebbly sandstone
are of probable fluvial origin, with paleocurrents oriented
to the east-northeast (Lawyer, 1972). The conglomerate is
reported to contain fossil wood (Lawyer, 1972). Large-scale
cross stratification is interpreted as barforms built above a
conglomeratic channel fill. The top has vertical, straight sand-
filled (carbonaceous lined) traces that could be root traces or
Skolithos (?7) burrows.

The inclined heterolithic strata consist of thin discontinu-
ous sandstone beds and interbedded mudrock with abundant
carbonaceous material capped in most places by a thin coal
bed. The sandstones are burrowed by abundant Teichichnus
(fig. 24E), but where bedding is preserved it is streaky to
wavy. These rocks fill a scour cut into the underlying sand-
stone facies (fig. 23B) and are interpreted to be the point bars
of a tidal channel. The highly burrowed fill indicates slow
deposition and reworking by monospecific burrowing possi-
bly indicating fluctuating brackish and frequent freshwater
influence. Brackish-water intrusion during low freshwater
conditions would have possibly brought in larva of the organ-
isms, which then died out during freshwater influx either
by storms or seasonally. The fining upward grain size and
decreasing upward energy levels within the main section along
Highway 24 (fig. 23) indicates a gradual abandonment of

the channel and in filling with vegetation, including trees, as
indicated by the thin coal at the top. Lawyer (1972) described
a much more diverse trace fossil assemblage, but it is difficult
to compare the traces with his described facies. This location
shows much more estuarine influence than seen at Mesa Butte
or Red Valley.

The upper sandstone unit has abundant oysters and rare
pectins (Lawyer, 1972), indicating marine influence. Lawyer
(1972) also noted some preserved symmetrical ripples indi-
cating wave action, but the majority of the sandstone was
reworked by burrowing. The most likely depositional environ-
ment is either shoreface or washover/flood-tidal-delta complex
reworked into the upper part of the incised valley prior to
marine flooding, wave ravinement, and deposition of marine
shale.

Reservoir Considerations

This locality is different to that observed at other
localities with fluvial deposits because these fluvial facies are
coarser grained and have the potential to have better porosity,
although there is more mudrock overall in the upper part of the
succession creating baffles to the reservoirs.
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